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1. Introduction

Supersymmetry (SUSY) is the most promising and best motivated framework for extend-

ing the Standard Model. However, nature turns out to be not supersymmetric at the

electroweak scale and therefore SUSY must be broken. The origin of the SUSY breaking

is still a prime open question. It is reasonable that SUSY is broken dynamically. In-

deed, dynamical SUSY breaking provides a natural explanation for the gauge hierarchy

problem [1]. The important fact in dynamical SUSY breaking is that if SUSY is not bro-

ken at tree level, it remains unbroken to all orders of perturbative corrections because of

the non-renormalization theorem [2]. This implies that SUSY is dynamically broken only

by non-perturbative effects such as instanton corrections. Thus, understanding of gauge

dynamics is crucial to study dynamical SUSY breaking.

There has been much progress in understanding the gauge dynamics of strongly coupled

N = 1 SUSY field theory with Nc color and Nf ≤ Nc + 1 flavors [3, 4]. The exact low

energy effective superpotential can be derived by using the holomorphy properties of the

superpotential and the gauge kinetic function. This progress has triggered the discovery

of many new SUSY breaking theories, as well as new techniques for establishing SUSY

breaking. One of the interesting models with dynamical SUSY breaking is the Izawa-

Yanagida-Intriligator-Thomas model [5, 6]. In this model, an O’Raifeartaigh type sector is

dynamically generated in the low energy superpotential. Therefore, SUSY is spontaneously
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broken. However, this SUSY breaking vacuum is degenerate i.e. there exists a pseudo

flat direction. In order to remove this degeneracy, we have to take account of quantum

corrections for the Kähler potential. In general, this is a very difficult task since the Kähler

potential is not holomorphic and thus quantum corrections can be estimated at best by

perturbative means. Such an estimation is possible only in the ultraviolet (weak coupling)

region of the moduli space parameterizing the pseudo flat direction which is far from the

origin. Therefore, the potential behavior in the infrared region remains unclear.

This situation is changed for N = 1 SUSY QCD with Nc colors and Nc + 1 ≤ Nf <
3
2Nc flavors [7]. In this flavor region, an O’Raifeartaigh type model arises as the low

energy effective theory of the magnetic dual and the effective theory is infrared free. This

is contrary to the Izawa-Yanagida-Intriligator-Thomas model where the gauge coupling

strength becomes strong at low energies. This property makes it possible to calculate

perturbative corrections to the Kähler potential in the infrared region. Indeed, in [7] it

is found that one-loop corrections to the Kähler potential remove the degeneracy of the

pseudo flat direction and that there is a stabilized SUSY breaking vacuum at the origin

of the moduli space. In addition to this vacuum, there are also Nc dynamically generated

SUSY vacua at points far from the origin which are expected to exist by the argument

of the Witten index. Thus the SUSY breaking vacuum at the origin is a local vacuum.

Furthermore, the local vacuum can be long-lived compared to the age of the universe

by choosing appropriate values of parameters in the theory. Therefore this local vacuum

is meta-stable. Inspired by this work, further detailed researches and phenomenological

applications have been performed [8 – 20].

As was mentioned above, in N = 1 SUSY models, one can estimate quantum cor-

rections to the Kähler potential only in a weak coupling region by perturbative means.

However, in an N = 2 SUSY gauge theory one can derive the exact low energy effective

action as was demonstrated by Seiberg and Witten [21, 22], using the properties of holo-

morphy and duality. In [23], we studied meta-stable vacua in an N = 2 SU(2) × U(1)

SUSY gauge theory with Nf = 2 massless flavors including a Fayet-Iliopoulos (FI) D-term,

by using the original analysis in [24]. Due to the FI term, the theory exhibits tree-level

SUSY breaking on the Coulomb branch in almost all of the moduli space except near the

origin. Around the origin along the Coulomb branch, there is an unstable direction to the

Higgs branch where a SUSY vacuum exists. In this model, we demonstrated that there is a

long-lived local minimum on the Coulomb branch in which the SUSY and U(1)R symmetry

are dynamically broken in the non-perturbative region. We showed that the decay rates

from the local minimum to the runaway SUSY vacuum and also to the SUSY vacua on the

Higgs branch are actually very small. Moreover, we pointed out that massive hypermulti-

plets in the model can play the role of messenger fields in the gauge mediation scenario if

a part of the flavor symmetry among the hypermultiplets is gauged and identified with the

Standard Model gauge group.

It is also possible to derive the exact low energy effective action in the N = 1 theory

based on the N = 2 theory perturbed by terms preserving N = 1 SUSY. Assuming that the

perturbation does not affect the gauge dynamics in the original N = 2 theory, we can use

the result of the Seiberg-Witten theory. In [25 – 27], it was shown that there can be a meta-
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stable SUSY breaking vacuum in the Seiberg-Witten theory with terms preserving N = 1

SUSY. M-theory brane configurations corresponding to these perturbed Seiberg-Witten

theories were discussed in [28, 29].

In this paper, we investigate a model with N = 1 SUSY realizing dynamical SUSY

breaking in meta-stable vacua. The model we consider is an N = 2, SU(2) × U(1) gauge

theory with Nf = 2 massless hypermultiplets perturbed by N = 1 preserving adjoint mass

terms and a linear term (the FI F -term). Although, in this model, only N = 1 SUSY is

preserved by the perturbation to the superpotential, the quantum theory can be analyzed

by extending the Seiberg-Witten solution, provided that the mass parameters µi and linear

term parameter λ are very small compared to the SU(2) dynamical scale Λ. In the classical

theory of our model, there are SUSY vacua on the Coulomb branch and the Higgs branch.

We will show that the SUSY vacua on the Coulomb branch are dynamically broken as a

consequence of the strong dynamics of the SU(2) gauge coupling while the SUSY vacuum

on the Higgs branch remains. We will also show that the decay rate from the local vacua to

the SUSY vacuum can be very small with an appropriate choice of parameters. Therefore,

we will find meta-stable SUSY breaking vacua.

The organization of this paper is as follows. In section 2, we introduce our model and

analyze the classical vacua. In section 3, the low-energy effective action is derived by using

exact results of N = 2 SUSY QCD. In section 4, the numerical analysis of the effective

potential is presented. Section 5 is devoted to the decay rate estimation of the meta-stable

SUSY vacua found in section 4. Section 6 is our conclusion. In appendix A, the formulas

necessary for the potential analysis are given.

2. The model

Let us first consider a tree-level Lagrangian of an N = 2, SU(2) × U(1) gauge theory with

Nf = 2 massless fundamental flavors Q and Q̃

LN=2 =
1

2π
Im

[

Tr

{

τ22

(
∫

d4θ A†
2e

2V2A2e
−2V2 +

1

2

∫

d2θ W 2
2

)}]

+
1

4π
Im

[

τ11

(∫

d4θ A†
1A1 +

1

2

∫

d2θ W 2
1

)]

(2.1)

+

∫

d4θ
[

Q†
re

2V2+2V1Qr + Q̃re
−2V2−2V1Q̃r†

]

+
√

2

[
∫

d2θ Q̃r(A2 + A1)Q
r + h.c.

]

.

Here, V2, A2 and V1, A1 correspond to SU(2) and U(1) vector multiplets respectively.

The chiral superfields Qr
I and Q̃I

r are hypermultiplets that are in the fundamental and

anti-fundamental representations of the SU(2) gauge group (r = 1, 2 is the flavor index,

and I = 1, 2 is the SU(2) color index). The superfield strength is defined by Wiα =

−1
4D

2
(e−2ViDαe2Vi) (i = 1, 2). The complex gauge couplings are defined by

τ22 = i
4π

g2
+

θ

2π
, τ11 = i

4π

e2
, (2.2)

where τ22 corresponds to an SU(2) complex gauge coupling and τ11 is a U(1) gauge cou-

pling. The common U(1) charge for the hypermultiplet is normalized to be 1. The SU(2)
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generators T a are normalized as Tr(T aT b) = 1
2δab. The global symmetry in this theory is

SU(2)left × SU(2)right × SU(2)R × U(1)R.

Let us introduce mass and linear terms for the chiral superfields A1, A2,

Lsoft =

∫

d2θ

(

µ2Tr(A2
2) +

1

2
µ1A

2
1 + λA1

)

+ h.c. (2.3)

These terms break N = 2 SUSY down to N = 1. The dimensionful parameters µi can

be taken to be real and positive without loss of generality, while we fix the dimensionful

parameter λ to be real and positive, λ > 0, for simplicity. The linear term in A1 is the FI

term. In general, the FI term also appears in the D-term, but the SU(2)R symmetry allows

us to take a frame so that it appears only in the F -term. Therefore, the SU(2)R symmetry is

explicitly broken down to its subgroup U ′(1)R. The superpotential (2.3) also breaks U(1)R
symmetry. The global symmetry of the theory turns out to be SU(2)left×SU(2)right×U ′(1)R.

The scalar potential is easily derived from the Lagrangian L = LN=2 + Lsoft

V (a1, a2, q, q̃) = g2Tr[A2, A
†
2]

2 +
g2

2

(

q†rT
aqr − q̃rT

aq̃†r
)2

+q†r[A2, A
†
2]q

r − q̃r[A2, A
†
2]q̃

†r + 2g2|q̃rT
aqr|2 +

e2

2
(q†rq

r − q̃r q̃
†r)2

+2
(

q†r|A2 + A1|2qr + q̃r|A2 + A1|2q̃†r
)

+
√

2µ2g
2(q̃rT

aqrAa
2 + h.c.)

+µ2
2g

2Aa†
2 Aa

2 + e2|λ + µ1A1 +
√

2qrq̃
r|2 (2.4)

where A1, A2, q
r and q̃r are scalar components in the corresponding chiral superfields.

Without the mass and linear terms, there is a SUSY vacuum on the Coulomb branch,

A2 =

(

a2 0

0 −a2

)

, A1 = a1, (2.5)

where a1 and a2 are the moduli of the vacuum. In this vacuum, the gauge symmetry is

broken to U(1)c × U(1). When turning on the mass and the FI terms, only the following

point in the moduli space is left as a SUSY vacuum

qr = q̃r = 0, A2 = 0, A1 = − λ

µ1
, (2.6)

where the SU(2) gauge symmetry is recovered. In addition to this SUSY vacuum on the

Coulomb branch, there is another SUSY vacuum on the Higgs branch given by

qI
1 = q̃I

1T =

(

u

v

)

, qI
2 = q̃I

2T =

(

v

−u

)

, u, v ∈ C ,

u2 + v2 =
−λ

2
√

2
, A2 = A1 = 0 . (2.7)

In the following, we focus on the Coulomb branch and proceed to investigate the

low-energy effective action.

– 4 –



J
H
E
P
0
3
(
2
0
0
8
)
0
0
4

3. Quantum theory

3.1 Effective action and monodromy

The exact low energy Wilsonian effective Lagrangian can be derived by integrating the

action to zero momentum. In our case, the resultant Lagrangian could be described by

light fields, the dynamical scale, the masses µi(i = 1, 2) and the coefficient of the FI term

λ. However, since it is in general very difficult to implement the integration, we assume

that µi and λ are much smaller than the dynamical scale of the SU(2) gauge interaction Λ,

i.e. µi ≪ Λ and λ ≪ Λ2. This setup allows us to expand the exact low energy Lagrangian

Lexact with respect to the parameters µi and λ as

Lexact = LSUSY + Lsoft + O(µ2
i , λ) . (3.1)

Here the first term LSUSY describes an N = 2 SUSY Lagrangian containing full quantum

corrections. The second term Lsoft includes the masses and the FI terms in the leading

order. In the following, we consider the effective action up to the leading order in µi and λ.

First we clarify the structure of the moduli space of the theory. As we have seen in the

previous section, without the soft term (2.3), the theory has a moduli space parameterized

by a2 and a1 on the Coulomb branch. Except at the origin of the moduli space the gauge

symmetry is broken down to U(1)c×U(1). Note that this U(1) gauge interaction is treated

as a cut-off theory [24, 23]. Thus, the Landau pole ΛL is inevitably introduced in our

effective theory, and the defining region of the modulus parameter a1 is constrained to lie

within the region |a1| < ΛL. Because of this constraint, the defining region for the modulus

parameter a2 is also constrained to be in the same region, since the two moduli parameters

are related to each other through the hypermultiplets. We take the scale ΛL to be much

larger than the dynamical scale of the SU(2) gauge interaction Λ as in [24, 23] (The explicit

scale of ΛL is given at the end of this section). This condition guarantees that the U(1)

gauge interaction is always weak in the defining region of moduli space. Note that in our

framework we implicitly assume that the U(1) gauge interaction has no effect on the SU(2)

gauge dynamics. This assumption will be justified in the following discussion concerning

the monodromy transformation.

First we consider the general formulas for the effective Lagrangian LSUSY. The La-

grangian LSUSY is given by two parts, vector multiplet part LVM and hypermultiplet part

LHM;

LSUSY = LVM + LHM . (3.2)

The LVM part consists of U(1)c and U(1) vector multiplets. The U(1)c vector multiplet

(A2, V2) originates from the unbroken part (Cartan subalgebra) of the classical SU(2) vector

multiplet whereas (A1, V1) belongs to the U(1) gauge multiplet which is left unbroken from

the classical level. The effective Lagrangian for these vector multiplets is

LVM =
1

4π
Im

2
∑

i,j=1

[
∫

d4θ
∂F
∂Ai

A†
i +

1

2

∫

d2θ τijWiWj

]

, (3.3)
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where F = F(A2, A1,Λ,ΛL) is a prepotential as will be discussed below. The effective

gauge coupling τij is defined by

τij =
∂2F

∂ai∂aj
, bij ≡

1

4π
Im(τij) (i, j = 1, 2). (3.4)

The hypermultiplet part LHM is

LHM =

∫

d4θ
[

M †
r e2nmV2D+2neV2+2nV1M r + M̃re

−2nmV2D−2neV2−2nV1M̃ r†
]

+
√

2

∫

d2θ
[

M̃r(nmA2D + neA2 + nA1)M
r + h.c.

]

, (3.5)

where M r, M̃r are chiral superfields and V2D, A2D are dual variables of V2, A2. These hy-

permultiplets correspond to the light BPS dyons, monopoles and quarks which are specified

through the appropriate quantum numbers (ne, nm)n. Here ne and nm are the electric and

magnetic charges of U(1)c, respectively, whereas n is the U(1) charge. The mass of the

BPS state is specified by

MBPS = |nea2 + nma2D + na1| , (3.6)

where a2D is a scalar component of the chiral superfield A2D. This LHM part should be

added to the effective Lagrangian as new degrees of freedom if we focus on the singular

points in the moduli space.

The soft term Lsoft is given by

Lsoft =

∫

d2θ

[

µ2U(A1, A2) +
1

2
µ1A

2
1 + λA1

]

+ h.c., (3.7)

provided that the condition µ2
i , λ ≪ Λ2 is satisfied. Here U(A2, A1) is a low energy effective

superfield given by

U(A2, A1) = u(a2, a1) + θ2F2
∂u

∂a2

∣

∣

∣

∣

a1

+ θ2F1
∂u

∂a1

∣

∣

∣

∣

a2

, (3.8)

where u represents a modulus field whose form in a weak coupling limit is u = Tr(A2
2), and

F1 and F2 are the auxiliary fields of A1 and A2, respectively.

In order to obtain an exact description of the effective Lagrangian, we need to find the

explicit form of the prepotential F and the effective coupling bij. To derive these, let us

consider the monodromy transformations around the singular points of the moduli space.

Suppose that the moduli space is parameterized by the vector multiplet scalars a2, a1 and

their duals a2D, a1D which are defined as aiD = ∂F/∂ai (i = 1, 2). These variables are

transformed into their linear combinations by the monodromy transformation. In our case,

the monodromy transformations form a subgroup of Sp(4,R), which leaves the effective

Lagrangian LVM + LHM invariant, and the general formula is found to be [30]










a2D

a2

a1D

a1











→











αa2D + βa2 + pa1

γa2D + δa2 + qa1

a1D + p(γa2D + δa2) − q(αa2D + βa2) − pqa1

a1











, (3.9)
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where

(

α β

γ δ

)

∈ SL(2,Z) and p, q ∈ Q. Note that this monodromy transformation for

the combination (a2D, a2, a1) is exactly the same as that for N = 2 SU(2) SUSY QCD

with Nf = 2 massive quark hypermultiplets, if we regard a1 as the common mass m of

the hypermultiplets such that m =
√

2a1. This fact means that the U(1) gauge interaction

part only plays the role of the mass term for the SU(2) gauge dynamics. This observation

is consistent with our assumptions. On the other hand, the SU(2) dynamics plays an

important role for the U(1) gauge interaction through the hypermultiplet part, as can be

seen from the transformation law of a1D. This monodromy transformation is also used to

derive dual variables associated with the BPS states. As a result, the prepotential of our

theory turns out to be essentially the same as the result in ref. [22] with the additional

relation m =
√

2A1,

F(A2, A1,Λ,ΛL) = F (SW )
SU(2)(A2,m,Λ)

∣

∣

∣

∣

∣

m=
√

2A1

+ CA2
1 , (3.10)

where the first term on the right hand side is the prepotential of N = 2 SUSY QCD with

hypermultiplets having the same mass m, and C is a free parameter. The freedom of the

parameter C is used to determine the scale of the Landau pole relative to the scale of

the SU(2) dynamics. For instance, taking C = 4πi leads to the value of the Landau pole

ΛL ∼ 1017−18Λ (for more detail, see appendix A and also [24, 23]).

Now that we have obtained the explicit form of the effective Lagrangian, let us move

on to the analysis of the potential.

3.2 Effective potential

We can write down the effective potential from (3.1) with (3.3), (3.5) and (3.7). After

using the equation of motion for the auxiliary fields Di, Fi, FM and FM̃ (i = 1, 2) of the

superfields Vi, Ai,M and M̃ , the effective potential is written as1

V = bijFiF
†
i +

1

2
bijDiDj + |FM |2 + |FM̃ |2. (3.11)

Here

D1 =
b12 − nb22

det b
(|M r|2 − |M̃r|2), (3.12)

D2 =
−(b11 − nb12)

det b
(|M r|2 − |M̃r|2), (3.13)

F1 =
−1

det b

[√
2M †

r M̃ r†(nb22 − b12) + X†
]

, (3.14)

F2 =
1

det b

[√
2M †

r M̃ r†(nb12 − b11) + Y †
]

, (3.15)

FM = −
√

2(a†2 + na†1)M̃
r†, (3.16)

FM̃ = −
√

2(a†2 + na†1)M
†
r , (3.17)

1We assume that the potential is described by the proper variables associated with the light BPS states.

For example, the variable a2 is understood implicitly as −a2D when we consider the effective potential for

the monopole.
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where det b = b11b22 − b2
12 and

|M r|2 = M rM †
r , |M̃r|2 = M̃rM̃

r†, (3.18)

X = b22(λ + µ1a1) + µ2

(

b22
∂u

∂a1
− b12

∂u

∂a2

)

, (3.19)

Y = b12(λ + µ1a1) + µ2

(

−b11
∂u

∂a2
+ b12

∂u

∂a1

)

. (3.20)

After plugging the solution (3.12)–(3.17) into (3.11), the potential is rewritten in terms of

a1, a2, M,M̃ . The result is

V (a2, a1,M, M̃ ) = S
[

(|M r|2 − |M̃r|2)2 + 4|M rM̃r|2
]

+ 2T (|M r|2 + |M̃r|2) + U

+

√
2

det b

[

M †
r M̃ r†(nX − Y ) + h.c.

]

. (3.21)

Here we have defined

S ≡ 1

2b22
+

(b12 − nb22)
2

2b22 det b
, (3.22)

T ≡ |a2 + na1|2, (3.23)

U ≡ 1

det b

[

b22

∣

∣

∣

∣

∣

(λ + µ1a1) + µ2
∂u

∂a1

∣

∣

∣

∣

∣

2

+ b11µ
2
2

∣

∣

∣

∣

∂u

∂a2

∣

∣

∣

∣

2

−
{

(λ + µ1a1)µ2b12
∂u†

∂a†2
+ µ2

2b12
∂u†

∂a†1

∂u

∂a2
+ h.c.

}]

. (3.24)

Let us consider the stationary conditions in the hypermultiplet directions M and M̃ ,

0 =
∂V

∂M † = S
[

2(|M |2 − |M̃ |2)M + 4(MM̃ )M̃ †
]

+ 2TM +

√
2

det b
M̃ †(nX − Y ), (3.25)

0 =
∂V

∂M̃ † = S
[

2(|M |2 − |M̃ |2)(−M̃) + 4(MM̃ )M †
]

+ 2TM̃ +

√
2

det b
M †(nX − Y ), (3.26)

where we have suppressed the indices for simplicity. From these equations, we find

2
[

S(|M |2 + |M̃ |2) + T
]

(|M |2 − |M̃ |2) = 0. (3.27)

Since S > 0 and T > 0, we obtain the condition |M | = |M̃ |. This allows us to re-express

M and M̃ as

|M | = |M̃ | ≡ M,

M ≡ Meiϑ, M̃ ≡ Meiϑ̃. (3.28)

Using the condition |M | = |M̃ |, we find

0 =
∂V

∂M † = 4SM3eiϑ + 2TMeiϑ +

√
2

det b
Me−iϑ̃(nX − Y ), (3.29)

0 =
∂V

∂M
= 4SM3e−iϑ̃ + 2TMe−iϑ̃ +

√
2

det b
Meiϑ(nX − Y )† . (3.30)
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These equations fix the phases ϑ and ϑ̃ as

ei(ϑ+ϑ̃) = ±
[

nX − Y

(nX − Y )†

]
1

2

. (3.31)

Substituting this solution into (3.30) gives

M
[

4SM2 + 2T ±
√

2

det b
|nX − Y |

]

= 0 . (3.32)

We find the following solution for the above equation

1) M = 0 , (3.33)

2) M2 = − T

2S
∓

√
2

4S det b
|nX − Y | . (3.34)

The positivity of M2 requires us to take the plus sign in (3.34). Corresponding to the

solutions (3.33) and (3.34), we have the following forms of the scalar potentials

1) V (a2(u, a1), a1) = U , (3.35)

2) V (a2(u, a1), a1) = U − 4SM4 . (3.36)

The solution (3.36) where the light hypermultiplet acquires a vacuum expectation value is

energetically favored because S > 0. The potential minimum is expected to emerge at the

singular points on the moduli space since the hypermultiplets appear in the theory as the

light BPS states there. In addition, the solutions are stable in the M direction. This is

because they are unique solutions and have a lower energy than (3.33). Furthermore the

potential is dominated by M4 term with a positive coefficient for a large value of M. On

the other hand, the solution (3.35) describes the behaviour away from the singular points.

It smoothly connects with the solution (3.36).

In the next section we examine the effective potential (3.36) numerically. The potential

is a function of the periods a2D, a2 and the effective couplings τij. In order to perform the

analysis of the potential, we need their explicit forms. Their detailed derivation was given

in [24, 23]. In the appendix A, we assemble these forms and also display other necessary

formulas for the analysis of the potential.

4. Numerical analysis

4.1 Singular points

As explained in the previous section, the minimum is expected to appear at the singular

point since it is energetically favored due to the non-zero condensation of the light BPS

state (see eq. (3.36)). Thus, let us first investigate the singular points before analyzing the

effective potential at the singular point.

The singular points on the moduli space are determined by the cubic polynomial [22].

The solutions of the cubic polynomial give the positions of the singular points in the u-

plane. In the case Nc = Nf = 2 with a common hypermultiplet mass m, which is regarded

– 9 –
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Figure 1: Flow of the singular points as Re(a1) increases with Im(a1) = 0.

as the modulus
√

2a1 here, the solution is easily obtained as

u1 = −mΛ− Λ2

8

∣

∣

∣

∣

∣

m=
√

2a1

, u2 = mΛ − Λ2

8

∣

∣

∣

∣

∣

m=
√

2a1

, u3 = m2 +
Λ2

8

∣

∣

∣

∣

∣

m=
√

2a1

. (4.1)

Let us first consider the case Im(a1) = 0. The flow of the singular points with respect to a1

is sketched in figure 1. For a1 = 0, the singular points appear at u1 = u2 = −Λ2/8 and u3 =

Λ2/8, which correspond to the dyon and the monopole BPS states with quantum numbers

(ne, nm)n = (−1, 1)0 and (0, 1)0, respectively. When switching on a1, the degenerate dyon

point splits into two singular points u1 and u2, whose BPS states are dyons with quantum

numbers (−1, 1)−1(left dyon) and (−1, 1)1 (right dyon), respectively. As a1 is increasing,

these singular points, u1 and u2, are moving to the left and the right on the real u-axis.

The two singular points, u2 and u3, collide and coincide at the so-called Argyres-Douglas

(AD) point [31] (u = 3Λ2

8 ) for a1 = Λ/(2
√

2), where it is believed that the theory becomes

superconformal. As a1 increases further, there appear two singular points u2 and u3 again,

and the quantum numbers of the corresponding BPS states, (−1, 1)1 at u2 and (0, 1)0 at

u3, change into (1, 1)−1(right dyon) and (1, 0)1 (quark), respectively. The singular point

u3 is then moving away to the right faster than u2. Note that for Im(a1) = 0, it is not

necessary to consider the case for a1 < 0, since the result for a1 < 0 can be obtained by

exchanging u1 ↔ u2, as can be seen from the first two equations in eq. (4.1).

4.2 Numerical calculation

Let us examine the effective potential (3.36) numerically. Since the potential minimum

appears at the singular point, it is sufficient to investigate the behavior of the effective

potential around the singular point. This consideration simplifies the numerical calcula-

tions. The singular point is specified by (4.1) and thus the potential at the singular point

becomes just a function of a1. In the following we investigate the effective potential at

some fixed values of a1 and see how the minimum appears at the singular point. Then we

examine the evolution of the minimum by varying a1. In the whole numerical analysis, we

take Λ = 2
√

2. The values of µi and λ will be taken so that the conditions µi ≪ Λ and

λ ≪ Λ2 are satisfied.
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Figure 2: The left figure shows the plots of the potential around the monopole singular point as a

function of real u with a1 = 0.2 (dotted), 0.3 (solid) and 0.4 (dash-dotted). For the case a1 = 0.3,

the potential is shown both with (bottom curve) and without (upper curve) condensation. The

right figure shows the evolution of the potential minimum at the monopole singular point V 3

min
as

a function of real a1.

Since the singular points in the moduli space exhibit different behaviors according to

the value of a1, let us separate the a1 region into three parts, namely, (i) 0 ≤ Re(a1) < Λ
2
√

2
,

(ii) Re(a1) = Λ
2
√

2
, (iii) Re(a1) > Λ

2
√

2
. In each region, we also consider the Im(a1) direction.

Let us first analyze the case µ1 = λ = 0. In this case, the soft term Lsoft is simply

Lsoft = µ2
2

∫

d2θU(A2, A1) + h.c. . (4.2)

Note that now there exists symmetry between two BPS states at the singular points u1 and

u2 for the region (i). They are invariant under the interchanges a1 ↔ −a1 and n ↔ −n

(see (3.6) and (4.1)).

(i) 0 ≤ Re(a1) <
Λ

2
√

2
. In this region, there are two dyons corresponding to u1 (left

dyon) and u2 (right dyon) and a monopole corresponding to u3. As anticipated in the

discussion in section 3, there are three potential minima at these singular points. The

left figure in figure 2 shows the effective potential around the monopole singular point

along the real u-axis for several fixed values of a1 with µ2 = 0.1. There potential has a

minimum at the singular point. The upper solid curve shows the potential without the

monopole condensation (3.35) and the bottom solid curve includes the condensation (3.36)

for a1 = 0.3. The cusps in the potential are smoothed out by introducing BPS states. It

shows that the BPS state enjoys correct degrees of freedom. The other curves are plots

for a1 = 0.2 (dotted) and a1 = 0.4 (dash-dotted). Note that the energy of the potential

minimum is not zero except a1 = 0 as we will show below. Now we examine how this

minimum evolves as a1 varies. The right figure in figure 2 shows the evolution of the

potential minimum at the monopole singular points V 3
min as a function of a1 with µ2 = 0.1

and Im(a1) = 0. As a1 is decreasing, V 3
min monotonically decreases and V 3

min = 0 at a1 = 0.

The behavior of V 3
min for complex values of a1 is shown as the contour plot in figure 3. The

dark (light) color shows lower (higher) value of the effective potential. Thus, the potential

minimum V 3
min is a SUSY vacuum at Re(a1) = Im(a1) = 0.
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Figure 3: The contour plot at monopole singular point as a function of complex a1.

Figure 4: Plots for the evolution of the minima at the left and the right dyon singular points.

A similar analysis can be performed for the other singular points. The evolution of

the potential energy at the right dyon singular point V 2
min as a function of Re(a1) with

µ2 = 0.1 and Im(a1) = 0 is shown in figure 4. The evolution of the effective potential at

the left dyon singular point V 1
mim has the same behavior as V 2

min since the singular points

at u1 and u2 get interchanged under a1 ↔ −a1 and n ↔ −n as mentioned in the previous

subsection.

We have seen that the theory has two SUSY vacua at the monopole and (degenerate)

dyon singular points at a1 = 0. This result can be understood from the fact that the

moduli structure of LSUSY for vanishing a1 is the same as the one of N = 2 SU(2) theory

with Nf = 2 massless flavors. Recall that LSUSY includes the prepotential F (SW )
SU(2) in (3.10)

which describes the moduli space u. For vanishing mass (a1 = 0), this prepotential is the

same as that of N = 2 SU(2) with Nf = 2 massless flavors which has a Z2 symmetry,

u ↔ −u [22]. The soft SUSY breaking term Lsoft with µ1 = λ = 0 has the effect of lifting
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Figure 5: Plots of the potential along real u-axis with the values a1 = 4, 4.5, 5 from left to right.

1.5 2.5 3 3.5 4 4.5 5

0.0001

0.0002

0.0003

0.0004

Figure 6: The evolutions of the potential energies V 2

min
(solid) and V 3

min
(dashed).

up the potential in all of moduli space except at the monopole and the dyon singular points

for a1 = 0. The remaining vacua exhibit the Z2 symmetry.

Below we shall show that when µ1 and λ are switched on, SUSY at these dyon and

monopole points is broken dynamically.

(ii) Re(a1) = Λ

2
√

2
. At the point a1 = Λ

2
√

2
(AD point), the two potential minima at

the right dyon singular point V 2
min and at the monopole singular point V 3

min coincide. As

we have mentioned, it is expected that the theory becomes superconformal. However, we

have no knowledge of the correct description of the theory at this point.

(iii) Re(a1) >
Λ

2
√

2
. In this region, there are again three singular points and correspond-

ingly three potential minima, V 1
min at u1 (left dyon), V 2

min at u2 (right dyon) and V 3
min at

u3 (quark). Figure 5 shows the effective potential along the real u axis around the right

dyon and the quark singular points for several values of a1. We note that the energy at the

potential minimum is not zero expect certain point. The evolutions of the two minima at

the right dyon and the quark singular points V 2
min and V 3

min are depicted in figure 6. The

potential energies V 2
min and V 3

min approach zero as a1 is decreasing, while the evolution of

the potential energy at the singular point u1 is the same as for 0 ≤ Re(a1) < Λ/(2
√

2).

Thus, there are runaway directions along the flow of the right dyon and the quark singular
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Figure 7: Global structure of vacuum. Solid and dashed curves show the evolutions of the potential

energies at the monopole and left(right) dyon points for 0 ≤ Re(a1) < Λ/(2
√

2). The potential

energies at the right dyon(dotted) and quark(dash-dotted) points for Re(a1) > Λ/(2
√

2) are also

plotted.

points. We can find the same global structure along the flows of these two singular points

for general complex a1 values.

The evolutions of the potential energies according the flows of the singular points

along the real u-axis are simultaneously plotted in figure 7. The theory has SUSY vacua

at a1 = 0 and infinity, and no (local) SUSY breaking vacuum. However, this analysis

gives us an important piece of information. In the presence of the soft term (4.2), the

gauge dynamics favors the monopole and the dyon points at a1 = 0 as SUSY vacua besides

the runaway vacua. It implies that if we can add certain terms to (4.2) which produce

a vacuum at a point different from a1 = 0 at the classical level, SUSY is dynamically

broken as a consequence of the discrepancy of SUSY conditions between the classical and

the quantum theories. Actually, turning on the mass µ1 and the FI parameter λ realizes

such a situation. In this case, the classical vacuum is at a1 = −λ/µ1, different from the

point a1 = 0 which the dynamics favors. A resultant SUSY breaking vacuum is realized

at non-zero value of a1. This is very similar to the SUSY breaking mechanism discussed

in the Izawa-Yanagida-Intriligator-Thomas model in N = 1 SUSY gauge theory [5, 6]. We

show a schematic picture of our situation in figure 8.

Let us see in detail how this works for non-zero values of µ1, µ2 and λ. First we

investigate the case 0 ≤ Re(a1) < Λ/(2
√

2). Figure 9 shows the evolution of the potential

energies at the monopole point V 3
min for several values of λ as a function of Re(a1) with

µ1 = µ2 = 0.1. The potential minimum is no longer realized at a1 = 0, but the location

is shifted to negative values of Re(a1) as is expected from the discussion in the previous

paragraph (see also figure 8). Furthermore, the potential energy has a non-zero value

and therefore SUSY is dynamically broken. The potential energy becomes large as λ is

increasing. This is expected from the fact that the effective potential behaves as V ∼ λ2

(see (3.24) and (3.36)). We also find that the potential minimum at the monopole point is

stable for general complex values of a1 (for the µ1 = λ = 0 case, see figure 3).
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Figure 8: Schematic picture of SUSY breaking mechanism

Figure 9: Local SUSY breaking minimum at the monopole singular point for µ1 = µ2 = 0.1 and

λ = 0.15, 0.17, 0.19 from bottom to top.

The same situation occurs at the degenerate dyon singular point. Recall that for

vanishing µ1 and λ the theory has vacua at the degenerate dyon point (u, a1) = (−Λ2, 0)

and at the monopole point (u, a1) = (Λ2, 0). These two vacua are transformed into each

other under the Z2 symmetry u ↔ −u. Since turning on µ1 and λ does not break this

symmetry, it is also expected that SUSY is dynamically broken at the degenerate dyon

point as it is shifted towards the negative direction of Re(a1). Therefore we now have two

SUSY breaking minima at the degenerate dyon point and at the monopole point.

In order to see the global structure of the effective potential we also need to investigate

the potential for Re(a1) > Λ/(2
√

2). Figure 10 shows the potential energy around the quark

singular point V 3
min as a function of Re(u) and the evolution of V 3

min as a function of Re(a1)

with µ1 = µ2 = 0.1 and λ = 0.15. Notably, the potential energy becomes large as a1 is

increasing. This behavior is completely different from the one of the µ1 = λ = 0 case. This

difference can be understood from the classical potential (2.4). Since we are considering

the Coulomb branch, substitute (2.5) with q = q̃ = 0 into (2.4). Then we obtain

V = 2µ2
2g

2a2
2 + e2|λ + µ1a1|2 . (4.3)
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Figure 10: The left figure shows the effective potential around the quark singular point with

a1 = 2, 2.5, 3 from the bottom to the top. The right figure shows the evolution of the potential

minimum at the quark singular point as a function of real a1 with µ1 = µ2 = 0.1 and λ = 0.15.

For large values of a1 the term e2µ2
1|a1|2 is dominant. Therefore the potential energy

increases monotonically with growing a1. We find that the potential energies at the left

and right dyon singular points also have the same structure.

A qualitative picture of the evolutions of the potential minima is depicted in figure 11.

Now we have seen that there are two SUSY breaking minima and that there is no

longer any runaway direction on the Coulomb branch. It appears that the two SUSY

breaking minima are global ones, but there is still a possible SUSY vacuum on the Higgs

branch whose existence in the classical theory is shown in (2.7). It is known that there are

no quantum corrections on the Higgs branch [32]. Thus, at the quantum level, the SUSY

vacuum on the Higgs branch is still left. In the next section, we discuss the decay rate from

the local SUSY breaking vacua at the monopole and dyon singular points to the SUSY

vacuum on the Higgs branch and show that the local vacua can actually be meta-stable

with an appropriate choice of parameters.

5. Decay rate of the local vacuum

In this section, we estimate the decay rate from the SUSY breaking local minima on the

Coulomb branch to the SUSY vacuum on the Higgs branch.

The local minimum at the monopole point on the Coulomb branch is approximately

given by the point C : (a1, a2) ∼ (−λ/µ1,Λ), q = q̃ = 0 while the Higgs SUSY vacuum is at

H, (2.7) (see figure 12). The distance between the vacua at Coulomb and Higgs branches,

|−−→CH|, is given by

|−−→CH|2 = 4(|u|2 + |v|2) +

(

λ

µ1

)2

+ Λ2 ≡ L2. (5.1)

We parameterize a point between C and H by the vector

~p(s) ≡ (a1, a2, qr=1, qr=2, q̃r=1, q̃r=2)

= s

(

λ

µ1
,−Λ,

(

u

v

)

,

(

v

−u

)

,

(

u

v

)

,

(

v

−u

))

+

(

− λ

µ1
,Λ,0

)

, (5.2)
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Figure 11: Qualitative picture of the evolutions of the potential minima.

Figure 12: Path from the Coulomb to Higgs vacuum.

where 0 ≤ s ≤ 1. The parameter value s = 0 corresponds to the Coulomb vacuum while

s = 1 corresponds to the Higgs vacuum. Substituting (5.2) into the classical potential (2.4),

we have

V (s) = V (~p(s)) ≡ (1 − s)2(s2β1 + β2) , (5.3)

where

β1 = 8
(

Λ − λ
µ1

)2
(|u|2 + |v|2) + e2λ2, β2 = 2µ2

2g
2Λ2 . (5.4)
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Now we show that there is a reasonable parameter region in which the local vacuum at

the Coulomb branch, C, is meta-stable. We take the following parameter region, Λ ≫ λ/µ1

and λ/µ2
2 ≫ g2, so that

β1

β2
∼ λ

µ2
2g

2
≫ 1 , (5.5)

where we have neglected the second term in β1 because of the small gauge coupling e2 ≪ 1.

Under eq. (5.5), the maximum value of the potential between C and H is located at s = 1/2

and its value is given by

∆V =
1

16
β1 +

1

4
β2 . (5.6)

Since the SUSY breaking scale is estimated to be V ∼ β2, we have

β2

∆V
∼ β2

β1 + β2
∼ β2

β1
≪ 1 . (5.7)

Thus we can use the thin-wall approximation to estimate the decay rate [33].

The bounce action B is evaluated in the triangle approximation [34]

B =
32π2

3

(∆V+)2(∆φ)4

ǫ3
(5.8)

where ǫ ∼ β2, ∆V+ = ∆V − ǫ, ∆φ = L in our case. The relevant quantities in the

calculation are

∆V+

ǫ
∼ β1

β2
≫ 1 ,

(∆φ)4

ǫ
∼ Λ2

g2µ2
2

≫ 1 . (5.9)

Then the bounce action is evaluated to be B ≫ 1, and the decay rate e−B is extremely

small. Therefore, the SUSY breaking vacuum at the monopole point is meta-stable. The

decay rate from the degenerate dyon point to the SUSY vacuum and the one from the

monopole point is the same due to the symmetric property in u-direction (see figure 11).

6. Conclusion and discussion

We investigated an SU(2) × U(1) supersymmetric gauge theory with Nf = 2 massless

flavors. It contains soft terms, displayed in eq. (2.3), mass terms for A1 and A2 which

break the N = 2 SUSY down to N = 1 and a term (a Fayet-Iliopoulos term) linear in A1.

We argued that when the parameters in the soft terms are small compared to the

dynamical scale we can perform a reliable non-perturbative analysis based on the Seiberg-

Witten solution. Our analysis revealed an interesting setup: On the Coulomb branch SUSY

is dynamically broken in a manner reminiscent of the Izawa-Yanagida-Intriligator-Thomas

model. A local minimum emerges, but no runaway SUSY vacua survive. On the Higgs

branch, however, the SUSY vacua present at tree level should survive quantum corrections.

The local minimum on the Coulomb branch decays into the Higgs branch vacuum, but not
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surprisingly, the values of the parameters can be chosen such that it is very long-lived, i.e.

meta-stable.

It is interesting to discuss the U(1)R symmetry. In some class of models possessing a

meta-stable SUSY breaking vacuum, an approximate U(1)R symmetry exists. In our model,

at the classical level the theory has an approximate U(1)R symmetry since we have taken

the parameters in (2.3) to be small. However, the U(1)R symmetry is broken to a discrete

subgroup at the quantum level even if there are no small superpotential perturbations.

Therefore, the theory does not have an approximate U(1)R symmetry at the quantum

level, so that the discussion in [36] cannot be applied to our case.

We would also like to comment on the difference between the models in this paper

and in our previous paper [23]. Apart from the obvious difference that in this paper we

start from a Lagrangian without extended SUSY, the pattern of vacuum states shows

interesting differences: In [23], the theory has SUSY vacua only on the Higgs branch while

on the Coulomb branch the potential has pseudo flat directions at the classical level. We

found that after taking all the quantum corrections into account the effective potential

exhibited a SUSY breaking local minimum. In the present case, a SUSY vacuum exists on

the Coulomb branch at the classical level. We showed that the SUSY vacua are lifted by

the gauge dynamics and revealed the mechanism how SUSY is dynamically broken.

In this paper, we chose a model simple enough to be able to perform a thorough

analysis. As such, it is too poor to serve as a basis for any realistic phenomenology.

However, we think that it once again shows the richness of supersymmetric gauge theories

in being able to provide instances of the most different kinds of properties, and in this

respect we hope that our simple model, like our previous attempt [23], could provide clues

for building realistic descriptions of a world with broken supersymmetry.
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A. Explicit form of the effective couplings

In this appendix, we show the explicit forms of the periods a(u), aD(u), the effective cou-

plings bij and other quantities such as ∂u
∂ai

. They are necessary for the analysis of the

potential (3.36) since the potential is a function of them. A more detailed derivation of

these expressions can be found in [24, 23]. In the following, Λ is a SU(2) dynamical scale

and m is a common mass for the hypermultiplets, which is replaced with a1 through the

relation m =
√

2a1 in the main body of the paper.
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We first consider the periods a2D and a2. Let us denote these as a21 and a22 respec-

tively. These are given by

a2i = −
√

2

4π

(

−4

3
uI

(i)
1 + 8I

(i)
2 +

m2Λ2

8
I
(i)
3

(

− u

12
− Λ2

32

))

− m√
2
δi2 , (A.1)

with the elliptic integrals I
(1)
s (s = 1, 2, 3) explicitly given by

I
(1)
1 =

iK(k′)√
e2 − e1

, (A.2)

I
(1)
2 =

ie1√
e2 − e1

K(k′) + i
√

e2 − e1E(k′) , (A.3)

I
(1)
3 = =

−i

(e2 − e1)3/2

{

1

k + c̃
K(k′) +

4k

1 + k

1

c̃2 − k2
Π1

(

ν,
1 − k

1 + k

)}

, (A.4)

where k2 = e3−e1

e2−e1
, k′2 = 1 − k2 = e2−e3

e2−e1
, c̃ = c−e1

e2−e1
, and ν = −

(

k+c̃
k−c̃

)2 (
1−k
1+k

)2
. Here

ei(i = 1, 2, 3) is a root of the elliptic curve for the N = 2 SU(2) QCD with massive Nf = 2

flavors

e1 =
u

24
− Λ2

64
− 1

8

√

u +
Λ2

8
+ Λm

√

u +
Λ2

8
− Λm ,

e2 =
u

24
− Λ2

64
+

1

8

√

u +
Λ2

8
+ Λm

√

u +
Λ2

8
− Λm , (A.5)

e3 = − u

12
+

Λ2

32
.

The formulae for I
(2)
s are obtained from I

(1)
s by exchanging the roots e1 and e2. In

eqs. (A.2)–(A.4), K, E and Π1 are the complete elliptic integrals [35] given by

K(k) =

∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2
, (A.6)

E(k) =

∫ 1

0
dx

(

1 − k2x2

1 − x2

)1/2

,

Π1(ν, k) =

∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2(1 + νx2)
.

Next let us consider the effective coupling defined in eq. (3.4). The effective couplings

τ22 and τ12 are obtained by

τ22 =
∂a2D

∂a2
=

ω1

ω2
, (A.7)

τ12 =
∂a2D

∂a1

∣

∣

∣

∣

∣

u

− τ22
∂a2

∂a1

∣

∣

∣

∣

∣

u

= −2z0

ω2
, (A.8)

where ωi is the period of the Abelian differential,

ωi = 2I
(i)
1 (i = 1, 2) , (A.9)
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Figure 13: Plot of the effective coupling b11 as a function of Re(a1) with u = 4.

and z0 is defined as

z0 = − 1√
e2 − e1

F (φ, k); sin2 φ =
e2 − e1

c − e1
. (A.10)

Here F (φ, k) is the incomplete elliptic integral of the first kind given by

F (φ, k) =

∫ sinφ

0

dt

[(1 − t2)(1 − k2t2)]1/2
. (A.11)

The effective coupling τ11 is described in terms of the Weierstrass function

τ11 = − 1

πi

[

log σ(2z0) +
4z2

0

ω2
I
(1)
2

]

+ C. (A.12)

Here σ is the Weierstrass sigma function, and C is the constant in eq. (3.10).

We now define the Landau pole associated with the U(1) interaction. In the ultraviolet

region far away from the origin of the moduli space, the effective coupling is dominated

by the U(1) gauge interaction since the SU(2) interaction is asymptotic free and small. As

expected, the gauge coupling b11 is found to be a monotonically decreasing function of the

large |a1| with fixed u, and vice versa. The Landau pole is defined as |a1| = ΛL at which

b11 = 0. The large ΛL required in our assumption is realized by taking an appropriate

value for C. In this paper, we fix C = 4πi, which corresponds to ΛL = 1017−18 in units of

Λ [24, 23]. Figure 13 shows the plot of the effective coupling b11 for C = 4πi as a function

of Re(a1) with u = 4. The cusps appear through the effect of the SU(2) dynamics; their

locations are specified by (4.1).

Finally we give the forms of ∂u
∂a1

and ∂u
∂a1

. The former can be calculated as

∂u

∂a1

∣

∣

∣

∣

∣

a2

= − ∂u

∂a1

∣

∣

∣

∣

∣

a2

∂a2

∂a1

∣

∣

∣

∣

∣

u

= − 1

ω2

∂a2

∂a1

∣

∣

∣

∣

∣

u

= − 1

π

(

ω2ζ(z0) − 2z0ζ
(ω2

2

))

= −mΛ2

16π
I
(2)
3 . (A.13)
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The latter is simply given by

∂u

∂a2

∣

∣

∣

∣

∣

a1

=
1

ω2
. (A.14)
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